Skills and Jobs in the Future-Proven Steel Industry
ESSA mid-term conference

Some messages from GREENSTEEL

Milan Elkerbout, CEPS, 27 May 2021
Ambitious 2030 and 2050 goals

• At least -55% net by 2030
• Some industrial emissions reductions needed: also in steel?
• Time horizon overlaps with sectoral investment cycle
• By 2050: deep transformation
Different paths to climate neutrality

- Massive electrification and renewables
- Less virgin steel, more circularity
- DRI & hydrogen
 - Green: even more RES-E
 - Blue: depends on CCS
 - Other types possible
- CCUS: value chain emerging
What does it mean for skills?

• Just transition
 • Reskilling and upskilling
 • Inevitability of continued transition next 3-4 decades
 • Life-long learning and support for workforce
 • More horizontal profiles?

• New skills for a climate neutral, circular steel sector
 • New value chains (H2 and CCUS)
 • CCUS can retain more conventional sites
 • Less mining, more digitalization
Three findings for future skills

1. **New production methods will emerge:**
 - DRI with H2 – CCUS
 - Future: more experimental steelmaking? (molten oxide electrolysis)
 - Increased **circularity**: more jobs in industrial **deconstruction**

2. **Steel will integrate with new value chains**
 - **Hydrogen** (including RES-E) and CCUS
 - Negative emissions: CDR (BECCS)
 - More **demand for green steel** in products

3. **Digitalization**: to improve efficiency and competitiveness of future clean steelmaking, rather than to improve energy efficiency in current production
 - **Big data**: to support quality assurance, can make the industry more competitive irrespective of decarbonization, but may be extra important with new steelmaking technology
 - **IoT, robotics, AI**: increased efficiency, optimization
 - **Additive manufacturing** -> increased quality combined with climate neutrality can create specific demand for new steel types, supports EU competitiveness
Main barriers to improve future skills?

• Challenge to balance investment in reskilling and upskilling with industrial transformation
• Regional dimension adds challenge to steel sector transformation
 • Optimal steelmaking locations can change significantly
 • If demand for basic materials goes down: which sites should close?
What can ESSA learn from GreenSteel?

- Extensive analysis of **technological pathways** for decarbonization
- Analysis of **financing** and **investment** needs
- **Policy options** to enable transformation to climate neutrality

➢ *Project and publications will be finished this summer*
Thank you

milan.elkerbout@ceps.eu

Twitter: @milanelkerbout